Multi-disciplinary Modality Classification for Medical Images
نویسندگان
چکیده
Modality is a key facet in medical image retrieval, as a user is likely interested in only one of e.g. radiology images, flowcharts, and pathology photos. While assessing image modality is trivial for humans, reliable automatic methods are required to deal with large un-annotated image bases, such as figures taken from the millions of scientific publications. We present a multi-disciplinary approach to tackle the classification problem by combining image features, meta-data, textual and referential information. Our system achieved an accuracy of 96.86 % in cross-validation on the ImageCLEF 2011 training dataset having 18 imbalanced modality classes, and an accuracy of 90.2 % on the ImageCLEF 2010 dataset having 8 well-balanced modality classes. We evaluate the importance of the individual feature sets in detail, and provide an error analysis pointing at weaknesses of our method and obstacles in the classification task. For the benefit of the image classification community, we make the results of our feature extraction methods publicly available at http://categorizer.tmit.bme.hu/~illes/imageclef2011modality.
منابع مشابه
MKL for Robust Multi-modality AD Classification
We study the problem of classifying mild Alzheimer's disease (AD) subjects from healthy individuals (controls) using multi-modal image data, to facilitate early identification of AD related pathologies. Several recent papers have demonstrated that such classification is possible with MR or PET images, using machine learning methods such as SVM and boosting. These algorithms learn the classifier...
متن کاملMULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملModeling decision-making in single- and multi-modal medical images
This research introduces a mode-specific model of visual saliency that can be used to highlight likely lesion locations and potential errors (false positives and false negatives) in single-mode PET and MRI images and multi-modal fused PET/MRI images. Fused-modality digital images are a relatively recent technological improvement in medical imaging; therefore, a novel component of this research ...
متن کاملAn Algorithm for 3D Registration of Multi-Modality Medical Images by Use of Voxel-Similarity-Based Measures
0. Abstract This report describes work done within a practical training at the Philips Research Laboratories / Technical Systems Hamburg in 1995. My work was concerned with the development and implementation of a completely automatic image registration algorithm that uses a voxel-similarity-based measure as matching criterion. Both singleand multi-modality 3D medical images can be processed. Fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011